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Abstract. Multistage stochastic linear programming (MSLP) is a powerful tool for making decisions
under uncertainty. A deterministic equivalent problem of MSLP is a large-scale linear program with
nonanticipativity constraints. Recently developed infeasible interior point methods are used to solve
the resulting linear program. Technical problems arising from this approach include rank reduction
and computation of search directions. The sparsity of the nonanticipativity constraints and the special
structure of the problem are exploited by the interior point method. Preliminary numerical results
are reported. The study shows that, by combining the infeasible interior point methods and specific
decomposition techniques, it is possible to greatly improve the computability of multistage stochastic
linear programs.
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1. Introduction

1.1. THE STOCHASTIC LINEAR PROGRAMMING MODEL

Multistage stochastic linear programming has extensive applications in produc-
tion and manpower planning, portfolio selections, and many other management
problems. A typical form of this model is as follows:

mincT0 x+E�1�minq1��1�
T y1+···+E�T−1

�minqT−1��T−1�
T yT−1�� (1.1)

s
t
 Ax=b
 x�0
 (1.2)

T1��1�x+W1��1�y1=h1��1�
 y1�0
 (1.3)

Tk��k�yk−1+Wk��k�yk=hk��k�
 yk�0
 k=2




T−1 (1.4)
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where x∈�n0 and yk∈�nk , �kis a random vector associated with stage k+1. The
superscript “T ” represents the transpose and the letter “E” denotes the expected
value.Ti��k� andWi��k� are randommatrices, qi��k� andhi��k� are randomvectors,
all of them are decided by the realization of the random vector �=��1




�T−1�.
For convenience of computation, it is often assumed that the size of the support of
� is finite.
The problem described by (1.1)–(1.4) is a T -stage stochastic linear program

with recourse. In the literature many algorithms have been designed for the special
case of T = 2. We refer to [3,6–9,13] and the references therein for the related
works. The recent work of Berkelaar et al. [3] is particularly interesting since it
not only takes the problem structure into account, but also addresses the possible
infeasibility of the problem.
Much of the research on multistage problems has been focused on decompos-

ition techniques associated with different solution ideas. The L-shaped methods,
for example, use a Benders decomposition of (1.1)–(1.4) to generate sets of feas-
ibility cuts and optimality cuts alternatively until the optimal solution is obtained.
Some other methods are based on Benders/Dantzig–Wolfe decomposition asso-
ciated with cutting plane methods [1, 2] and log-barrier methods [30]. There also
have been methods based on nonlinear programming approaches, e.g., [7,21,23]. A
drawback of the nonlinear programming approach is that a phase-one algorithm is
needed to generate a feasible point of the original problem, which is very expensive
for multistage stochastic linear programs and often reduces the efficiency of the
methods (e.g., see [7]). The seminal progressive hedging method (PHA for short)
developed by Rockafellar and Wets [20] is generally shown to be effective [10–
12,19]. It is however noted that the selection of a penalty parameter � in PHA is
difficult and an unsuitable �may result in slow convergence.
With the rapid growth and development in interior point methods, applying

interior point methods to solving large-scale stochastic programs has been a focal
point of recent research, see [3–5,24]. For a nice expository article on this subject,
see Zhang [27]. In this paper we present a new decomposition approach for solving
multistage stochastic linear programs. Compared to the literature, the new features
of this method include that

• the method is based on scenario decomposition (see below for details) rather
than recourse decomposition (see, e.g., [4, 27, 29] for details);

• there is a preprocessing mode that can detect inconsistency of the constraints
at an early stage of the algorithm;

• the sparsity of the nonanticipativity constraints and the special structure of the
problem are exploited in the implementation; and

• the method is associated with the infeasible potential reduction algorithm
rather than other type of interior point methods.
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Similar to other decomposition methods, the search direction is generated by solv-
ing a set of primal-dual equations of size much less than the original problem and
the solution process is parallelizable.

1.2. SCENARIO FORMULATION OF MSLP

A scenario is a realization of the joint random vector �=��1




�T−1�. Assume
that ��
�
P� is the associated probability space, where the support � is finite.
Thus, there is a finite number of scenarios. Let the probability distribution of �
be ����s�
ps��s=1
2




S� where ��s�=���s�1 
�

�s�
2 




�

�s�
T−1� and S is the

number of scenarios.
Each scenario is associated with a sequence of decisions: x�s�0 
y

�s�
1 




y

�s�
T−1.

For simplicity of notation let z
�s�
0 =x�s�0 
z

�s�
1 =y�s�1 




z

�s�
T−1=y�s�T−1 and let

z�s�=�z�s�0 �···�z�s�T−1�∈�n (where n=∑T−1
k=0 nk) be the decision vector

associated with the s-th scenario. Let

Bs=



A

T1��
�s�
1 � W1��

�s�
1 �

T2��
�s�
2 � W2��

�s�
2 �

···
TT−1��

�s�
T−1� WT−1��

�s�
T−1�


∈�m×n


(1.5)

bs=�b�h1���s�1 ��


�hT−1��
�s�
T−1��, and cs=ps�c0�q1���s�1 ��


�qT−1��

�s�
T−1��.

Then a deterministic equivalent problem of (1.1)–(1.4) is the following linear pro-
gramming problem.

min
S∑
s=1

cTs z
�s� (1.6)

s
t
 Bsz
�s�=bs
 z�s��0
 s=1




S (1.7)

Nz=0
 (1.8)

where z=�z�1��z�2��


�z�S��∈�nS , N is selected such that constraints in (1.8)
reflect the fact that scenarios sharing a common history up to any moment of time
must also have a common decision up to that moment.
With a large number of scenarios, program (1.6)–(1.8) may have very large size.

Thus, decomposition techniques play an important role in the development of the
algorithms, (see, e.g., [22]). Moreover, the parallel computers and Internet provide
additional computing power if most of the decomposed computations can be split
into jobs independent from each other.
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1.3. NONANTICIPATIVITY CONSTRAINTS

Constraints in (1.8) are the so-called nonanticipativity constraints, which merely
indicate the fact that if scenarios i and j have the same history up to stage kij , then
the decision vectors z�i� and z�j� should satisfy

z
�i�
0 =z�j�0 
z

�i�
1 =z�j�1 




z

�i�
kij−1=z�j�kij−1
 (1.9)

where i
j∈�1
2




S�.
There are many equivalent forms of nonanticipativity constraints. Different al-

gorithms may use different forms of them. Let i and i+1 be two consecutive
indices in the scenario sequence 1
2




S. Suppose that scenarios i and i+1
share the same history up to stage ki. We will use the form

z�i�t =z�i+1�
t 
 t=0




ki−1� i=1




S−1
 (1.10)

where z�i�t and z�i+1�
t are some of the subvectors of decision vectors z�i� and z�i+1�

respectively. In this caseN is a sparse and structuredmatrix (e.g., all entries are 0 or
±1). However, the combined system (1.7)–(1.8)may have some redundancy,which
presents a difficulty in using the interior point methods under our consideration.

1.4. ORGANIZATION AND SOME NOTATIONS

This paper is organized as follows. In Section 2 we introduce the primal-dual
infeasible-interior-point method for linear programming and apply it to problem
(1.6)–(1.8). A procedure for deleting redundant nonanticipativity constraints is
given. The overall decomposition scheme on the direction-finding subproblem is
presented. In Section 3 we give a specific decomposition algorithm for a key equa-
tion in the direction-finding subproblem. Then the algorithm is proposed. Some
preliminary numerical results are reported in Section 4. Our notations are con-
sistent to most of the literatures in stochastic programming. The superscript �s�
represents the s-th scenario, for example, z�s� is the decision vector associated with
the s-th scenario. A subscript j usually designates the j-th subvector or the j-th
component of a vector. Usually, capital letters are for matrices, lower case letters
stand for vectors, and Greek letters denote scalars.
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2. Applying infeasible interior point method to multistage stochastic
linear programs

2.1. INFEASIBLE INTERIOR POINT METHOD FOR LINEAR PROGRAMMING

Consider the linear program in standard form

min cTx (2.1)

s.t.Ax=b
 x�0 (2.2)

and its dual problem

max bTy (2.3)

s.t.ATy+z=c
 z�0
 (2.4)

The so-called infeasible interior point methods start from some x0>0 and z0>0
and y0, but Ax0−b may not be zero and z0 may not equal to c−ATy0, that is,
�x0
y0
z0� may not be feasible for the primal and dual programs and it is an in-
terior but possibly infeasible starting point. At each iteration the infeasible interior
point methods generate the search direction �dx
dy
dz� by solving the system of
linear equations

A 0 0
0 AT I
Z 0 X




dxdy
dz


=−


 Ax−b
ATy+z−c
Xz−(e


 (2.5)

for a scalar (>0, where Z=diag�z� X=diag�x�, and e=�1




1�T ∈�n.
Then a line search is performed based on different criteria and ( is updated such
that (↓0. At termination the algorithms can find primal and dual optimal solu-
tions if they exist or detect that such optimal solutions do not exist. The differences
of various methods reside in the way to reduce (, the way to do line searches, or
even the form of right hand side of (2.5). See for examples [14,15,17,28,25] for
details. These methods are generally regarded as among the most efficient interior
point methods for large-scale linear programming. In theory, most of them have
polynomial worst-case complexity.
Two features of the infeasible interior point methods are important for multistage

stochastic linear programs. First, they start from an infeasible point. Second, the
methods can detect infeasibility. Due to the complexity of multistage problems,
a multistage stochastic linear program is often intrinsically ill-modeled. Thus, a
method that detects infeasibility can provide important information for the user.
A popular version of the infeasible interior pointmethods is theMizuno–Kojima–

Todd (MKT) primal-dual potential reduction algorithms [18]. In addition to solving
system (2.5), in their algorithms the function

*�x
z�=�n++�ln�xT z�−eT ln�Xz�−nlnn (2.6)

and its variant
,�x
y
z� = �n+++1�ln�xT z�−eT ln�Xz�−nlnn−

ln�xT z−-��Ax−b
ATy+z−c��� (2.7)
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are taken as the potential functions for their Algorithm I and Algorithm II, respect-
ively, where +>0 and ->0 are constants. The line search is done by selecting
the stepsize .∈�0
1/ such that

*�x+.dx
z+.dz�−*�x
z� � −0 (2.8)

�x+.dx�T �z+.dz�−�1−.�xTz � 0 (2.9)

for Algorithm I and

,�x+.dx
y+.dy
z+.dz�−,�x
y
z��−0 (2.10)

for Algorithm II for a given constant 0>0. Since the implementation of Algorithm
I is straightforward, we will use this algorithm in our computational test although
other infeasible interior point methods can be applied without essential difference.

2.2. PREPROCESSING: FULL RANK REDUCTION

Any efficient implementation of interior point methods requires that the matrix
A in (2.2) has full row rank. This is not an easy task when it comes to problem
(1.6)–(1.8). Let

B=



B1

B2

···
BS


 and b=



b1




bS



 (2.11)

Let us call problem (1.6)–(1.8) scenario-consistent if the set �z�Bz=b� is not
empty. This consistency can be decided by checking the consistency of the systems
Bsz

�s�=bs for s=1




S. This checking process will enable us to terminate
the algorithm early in case the problem is inconsistent. There are some computer
packages which can be utilized for this purpose. For example, the “rank” command
in MATLAB can give the rank of Bs and 1Bs
bs/. Thus we find inconsistency
whenever rank1Bs/< rank1Bs
bs/ for some s. By checking consistency and delet-
ing redundant constraints (if any) in 1Bs
bs/
 s=1




S, we may assume that
B is of full row rank. Suppose that the nonanticipativity constraints in (1.8) take
the form of (1.10). Then N is also of full row rank.
Even if both B and N are of full row rank, the matrix �BT 
N T �T may not be of

full row rank. See the following example.

EXAMPLE 2.1. Consider a simple three-stage stochastic linear program with
constraints (1.2)–(l.4) being

x1−x2 = 1
 x1�0
x2�0
 (2.12)

2x1+x2−y1 = �1
 y1�0
 (2.13)

2y1−y2 = �2
 y2�0
 (2.14)
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Suppose that �1 and �2 have two realizations respectively, thus S=4. So N defined
by (1.10) is

N =



I 0 0 −I 0 0
0 1 0 0 −1 0

I 0 0 −I 0 0
I 0 0 −I 0 0
0 1 0 0 −1 0



 (2.15)

where I is a 2×2 unit matrix. Hence N is a 8×16 matrix. It is easy to note that
B defiined by (2.11) is a 12×16 matrix. Thus, �BT 
N T �T is not of full row rank.

The example is not specially constructed, so it reflects a common fact for stochastic
linear programs. For instance, the test problems randomly generated in Section 4,
about 20–30% of the rows in �BT 
N T �T are redundant.
We consider how to eliminate constraints in (1.10) such that �BT 
N T �T is of

full row rank. Since constraints in (1.7) have full row rank, we only have to elim-
inate some of the nonanticipativity constraints. Notice that the structure of the left
hand side of equality constraints in (1.7)–(1.8) is

A=
[
B
N

]
=




B1

B2

B3

···
BS−1

BS
1I1
0/ 1−I1
0/

1I2
0/ 1−I2
0/
···
1IS−1
0/ 1−IS
0/




 (2.16)

where Ii
i=1
··· 
S are unit matrices of suitable sizes, depending on the number
of decision variables in common of scenarios i and i+1. By re-arranging the rows,
we have

rank�A�= rank




B1

1I1
0/ 1−I1
0/
B2

1I2
0/ 1−I2
0/
B3

···
1IS−1
0/ 1−IS−1
0/

BS




 (2.17)

The special block diagonal structure of A suggests the following approach. Firstly,
after suitable column re-ordering, the resulting system from A (denoted by Ā) has
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the form

Āz 3=




1M1
J1/
K1 L1

1M2
J2/
K2 L2

1M3
J3/
···
KS−1 LS−1

1MS
JS/



z=




b1
c1
b2
c2




bS



=3 b̄


(2.18)

where Ms
s=1




S are square nonsingular matrices. That is, we normalize
each Bs such that the leftmost square block in Bs is nonsingular for all s. In doing
so, each block of the form 1I
0/1−I
0/ becomes the form 1KL/.
Next, we do block Gaussian elimination as follows. We first eliminate part ofK1

using M1 resulting in 10
K ′
1/. Then using M2 to eliminate both part of L1 and part

of K2, resulting 10
L
′
1/ and 10
K

′
2/, respectively. We proceed this using M3






untilMS . We obtain an equivalent system

Ãz 3=




1M1
J1/
10
K ′

1/ 10
L′
1/

1M2
J2/
10
K ′

2/ 10
L′
2/

1M3
J3/
···
10
K ′

s1
/ 10
L′

S−1/

1MS
JS/



z=




b̄1
c̄1
b̄2
c̄2





b̄S



=3 b̃


(2.19)

We discuss three cases.

Case 1. K ′
1 has full row rank. By changing column order in K ′

1 we may write K ′
1

as 1M ′
1
J

′
1/. Thus the first three rows of Ā can be written as

M1 ··· ··· ··· ···
M ′

1 ··· ··· ···
M2 ··· ···


 (2.20)

without affecting other part of Ã.

Case 2. Not K ′
1 but 1K ′

1
L
′
1/ has full row rank. Let this rank be m. Then we

interchange independent columns in L′
1 with nonindependent columns ofK ′

1 so that
in the resulting second row in (2.19) the leftmostm columns ofK ′

1 are independent.
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The resulting Ã will have the following form

Ã=




1M1
J
′
1/

10
K ′′
1 / 10
L′′

1/
10
J ′

2/ 1M2
J
′′
2 /

10
K ′′′
2 / 10
K

′′
2 / 10
L′

2/
1M3
J3/

···
10
K ′

S−1/ 10
L
′
S−1/

1MS
JS/




 (2.21)

where the first m columns of K ′′
l are independent and only the first m columns of

J ′
2 and K

′′′
2 can be nonzero. Then use the first m columns of K ′′

1 to eliminate the
first m columns of J ′

2 and K ′′′
2 . This may result in that the m+1st, m+2nd





columns of J ′
2 andK

′′′
2 become nonzero. If this happens, we move these columns of

Ã to the right of J ′′
2 . The resulting first three columns of (2.19) will take the form

of (2.20). Thus, in this case we obtain the same row-echelon form as in Case 1.

Case 3. 1K ′
1
L

′
1/ is not of full row rank. Then either 1K ′

1
L
′
1
c1/ contains a

redundant row or rank1K ′
1
L

′
1/< rank1K ′

1
L
′
1
c1/ that shows inconsistency of

the system. We delete a redundant row or terminate the algorithm, respectively. If
the system is consistent and after all redundant rows are deleted, the case reduces
to Case 1 or Case 2 above.

So far we have shown that, if the system is consistent, then the first three rows
can be made to have the so-called row-echelon form (2.20), in which M1
M

′
1
M2

are nonsingular square matrices. Proceed from this form in the same way for the
third, fourth and fifth rows and so on, we will either stop at a certain step and
claim that the system is inconsistent or we will eventually reduce the system to
an equivalent block row-echelon form with all first square sub-blocks of the row-
blocks being nonsingular. This shows that the matrix Ā has full row rank.
We record all deleted rows in this process and delete the corresponding rows of

N , resulting in N̄ . In the end we obtain a modified system �BT 
�N̄ �T �T and start
the interior point method with it. In other words, the above process is just used to
eliminate redundancy from the original system. The structure of the original system
is preserved for the decomposition method in the next section.
We remark that while at the first glance the above preprocessing looks very

tedious, it is important to notice that the process is fully parallelizable in the sense
that the processing of blocks 1−3
3−5
5−7



 are independent and hence can
be done in parallel and in arbitrary order.
Back to the example, (2.15) in Example 2.1 may be reduced to

1 01×3 −1 01×3

1 01×3 −1 01×3

1 01×3 −1 01×3


 (2.22)
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In summary, we have shown that we can detect the inconsistency of system[
B
N

]
z=

[
b
0

]

and in case that the system is consistent we can remove all redundant equations so
that the resulting system[

B
N̄

]
z=

[
b
0

]

has full row rank. In view of this, from now on we assume that the matrix �BT 
N T �
in (1.7)–(1.8) is of full column rank. We will equivalently speak of that �BT 
N T �T

has full row rank and that �BT 
N T � has full column rank.

2.3. DECOMPOSING THE DIRECTION-FINDING PROBLEM

In this subsection we consider the application of the Mizuno-Kojima-Todd method
to the problem (1.6)–(1.8). A minor trick is used to develop our decomposition
method. Rather than taking primal constraints (1.7) and (1.8) as an integration as
done by direct extension of the interior point method, we separate (1.7) and (1.8)
into different parts, and do the same for the corresponding dual variables u and w.
Let

F�z
u
v
w�=




Bz−b
BTu+v+NTw−c

ZVe
Nz


 (2.23)

where Z=diag�z�s�j �, V =diag�v�s�j �. Then the system for finding the search
direction (2.5) can be written as the following system of linear equations.

J�z
u
v
w�



dz
du
dv
dw


=−F�z
u
v
w�+




0
0
(e
0



 (2.24)

where J is the Jacobi of F
(=zTv/�nS�.
It is easy to compute that

J�z
u
v
w�=



B 0 0 0
0 BT I N T

V 0 Z 0
N 0 0 0



 (2.25)
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Moreover, it can be seen that if z>0 and v>0, then (2.24) is equivalent to
solving the following three systems of linear equations:

B 0 0
0 BT I
V 0 Z




 d̃zd̃u
d̃v


=−


 Bz−b
BTu+v−c
ZVe−(e


 (2.26)

N�V −1Z−V−1ZBT�BV−1ZBT�−1BV−1Z�NT �w+dw�=−N�z+d̃z�

(2.27)

and 
B 0 0
0 BT I
V 0 Z




dzdu
dv


=−


 Bz−b
BTu+v+NT�w+dw�−c

ZVe−(e


 (2.28)

The following result shows that the coefficient matrix in (2.27) is positive def-
inite under the full rank assumption.

PROPOSITION 2.1. Suppose that z>0 and v>0, Z=diag�z� and V =
diag�v�. Let M=N�V−1Z−V−1ZBT�BV−1ZBT�−1BV−1Z�NT . Then M is
positive semi-definite. Furthermore, if �BT 
N T � is of full column rank, then M is
positive definite.

Proof. Matrix U�I−V T �VV T �−1V �UT is positive semi-definite since the I−
V T �VV T �−1V is a projection matrix. If �V T 
U T � is of full column rank, by QR
decomposition, we have

�V T 
U T �= 1Q1
Q2
Q3/


R11 R12

0 R22

0 0


 (2.29)

where Q= 1Q1
Q2
Q3/ is a unitary orthogonal matrix, R11 and R22 are up-
per triangle matrices with all diagonal entries being nonzero. Thus we have V =
RT11Q

T
11 and U =RT12Q1+RT22QT

2 . Hence,

U�I−V T �VV T �−1V �UT = UUT−UVT�VV T �−1VUT

= RT12R12+RT22R22−RT12R11�R
T
11R11�

−1RT11R12

= RT22R22

(2.30)

The positive definiteness of the left matrix in (2.30) follows from the nonsingularity
of R22.
Since z>0 and v>0, let N̄ =NV−1/2Z−1/2 and B̄=BV−1/2Z−1/2, we have

M= N̄ �I−B̄T �B̄B̄T �−1B̄�N̄ T 
 (2.31)
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Moreover, �B̄T 
N̄ T � is of full column rank if and only if �BT 
N T � is of full column
rank. The desired result follows. �

3. The algorithm

We present our algorithm in this section. The solutions of problems (2.26), (2.27)
and (2.28) resulted from decomposition will be specialized in the subsections.

3.1. SOLVE EQUATIONS (2.26) AND (2.28) IN PARALLEL.

We first notice that equation (2.26) can be split into the following systems of
equations


 Bs 0 0

0 BTs I
V �s� 0 Z�s�




 d̃�s�zd̃�s�u
d̃�s�v


=−


 Bsz

�s�−bs
BTs u

�s�+v�s�−cs
Z�s�v�s�−(e


 (3.1)

where s=1
2
··· 
S. Correspondingly, if we partition N into S blocks, each with
n columns as �N1
N2
··· 
NS�, then (2.28) is equivalent to S systems of equations

 Bs 0 0
0 BTs I
V �s� 0 Z�s�




d�s�zd�s�u
d�s�v


=−


 Bsz

�s�−bs
BTs u

�s�+v�s�+NT
s ŵ−cs

Z�s�v�s�−(e


 (3.2)

where ŵ=B+dw. It is easy to note that (3.1) and (3.2) can be solved in parallel
for s=1
2




S. In particular, note that the coefficient matrices in (3.1) and
(3.2) have the same structure as that in primal-dual methods for standard linear
programming, thus all existing theoretical and practical techniques on decomposi-
tion for standard linear programming can be included to deal with (3.1) and (3.2)
in our method.

3.2. DECOMPOSITION OF (2.27)

How to solve the linear equation (2.27) efficiently is one of the key problems for
our algorithm. Since the size of N is comparable to the number of scenarios S,
(2.27) can be large when S is very large. Thus, to solve it directly may be very
expensive even if the coefficient matrix of (2.27) is symmetric positive definite.
The idea is to try to exploit the sparsity of the coefficient matrix and its special

structure. We have the following results, which are similar to that in Section 5 of
Zhao [29].
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PROPOSITION 3.1. Consider the tri-block-diagonal matrix

G=



H1 U1

UT
1 H2 U2

UT
2 H3

··· ··· ···
UT
J−1 HJ



 (3.3)

where Hi∈�li×li �i=1
2




J �. let

Q1=H1
Qi=Hi−UT
i−1Q

−1
i−1Ui−1�i=2




J �


IfG is positive definite, then all Qi are nonsingular, andG can be decomposed as

G=




I1
UT

1 Q
−1
1 I2

··· ···
UT
J−1Q

−1
J−1 IJ





Q1

Q2

···
QJ






I1 Q

−1
1 U1

I2 Q−1
2 U2

··· ···
IJ





(3.4)

where sizes of identity matrices Ii�i=1




J � are the same as Qi.
Proof. G is positive definite if and only if all of its principal submatrices are

positive definite. Thus,

H1 and
[
H1 U1

UT
1 H2

]
are positive definite. Hence, Q1 is nonsingular. since[

I1 0
−UT

1 Q
−1
1 I2

][
H1 U1

UT
1 H2

][
I1 −Q−1

1 U1

0 I2

]
=
[
Q1

Q2

]

 (3.5)

we have

det
[
H1 U1

UT
1 H2

]
=det

[
Q1

Q2

]

 (3.6)

so detQ2 �=0, that is, Q2 is nonsingular. Similarly, we can prove for all i=
2




J 
Qi=Hi−UT

i−1Q
−1
i−1Ui−1 is nonsingular.

(3.4) can be derived directly by matrix multiplication. �

PROPOSITION 3.2. Suppose thatN is selected such that �BT 
N T � has full column
rank. Then the coefficient matrix of the linear equation (2.27) is a positive deftnite
tri-block-diagonal matrix.
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Proof. We consider two cases.
(1) N has the form of


N1 −N1

N2 −N2

··· ···
NS−1 −NS−1


 (3.7)

with all Ni�i=1




S−1� having n columns. Let

P=V −1Z−V−1ZBT�BV−1ZBT�−1BV−1Z

Correspondingly, by (2.11),

P=diag�P1




PS�
 (3.8)

where Ps=V �s�−1
Z�s�−V �s�−1

Z�s� BTs �BsV
�s�−1

Z�s�BTs �
−1BsV

�s�−1
Z�s�∈�n×n

for s=1




S are symmetric matrices. By doing matrix multiplications, we
have

NPNT =

N1�P1+P2�N

T
1 −N1P2N

T
2−N2P2N

T
1 N2�P2+P3�N

T
2 −N2P3N

T
3··· ··· ···

−NS−1PS−1N
T
S−2 NS−1�PS−1+PS�N T

S−1




(3.9)

which is a tri-block-diagonal matrix of the formG in Proposition 3.1. The positive
definiteness is guaranteed by Proposition 2.2.
(2) There are some rows missing in (3.7). In this case, the original problem is

decoupled into several smaller problems, which results in that NPNT consists of
several independent blocks, with each block being block tri-diagonal. For instance,
if only the i-th row is missing, then N is of the form



(N1 −N1

··· ···
Ni−1 −Ni−1

)
(Ni+1 −Ni+1

··· ···
NS−1 −NS−1

)




 (3.10)

In this case, NPNT will consists of two big diagonal blocks, say diag�N1P̄1N
T
1 


N2P̄2N
T
2 � with P̄1=diag�P1




Pi� and P̄2=diag�Pi+1




PS� correspond-

ingly. Then each big block can be computed by (1), respectively. The problem with
multi-missing rows is similar. �
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Applying this process to Example 2.1, since N has three rows with Ni= 11
0
0

0/
i=1
2
3, each block in matrix (3.9) is a single number. Thus NPNT is a
3×3 tri-diagonal symmetric positive semidefinite matrix, and (3.4) is the so-called
LDL-decomposition ofG=NPNT .

3.3. OUR ALGORITHM

For problem (1.6)–(1.8), the potential function (2.6) can be written as

*�z
v�=�nS++�ln�zT v�−eT ln�Zv�
 (3.11)

where e∈�nS is a vector with all entries being one.
Now we can state our algorithm for the deterministic equivalent (1.6)–(1.8) of

multistage stochastic linear programs.

ALGORITHM 3.1. (The decomposition algorithm for multistage stochastic linear
program)
Step 1. Choose initial constants 00∈�0
1/
01∈�0
1�
F>0 and ->0 (which

may depend on nS), the stopping tolerance F. Set the initial infeasible point
�z0
u0
v0
w0�=00F0�e
0
e
0�. Let k=0;

Step 2. Check the stopping criteria (3.14)–(3.16). If they hold, stop;
Step 3. Let(k=1/�nS++� zTk vk. Solve (3.1) to generate auxiliary directions �d̃zk


d̃uk
d̃vk� in parallel;
Step 4. Solve the linear equation (2.27) to derive ŵk, let dwk= ŵk−wk;
Step 5. Solve the system of linear equations (3.2) to generate the search direction

�dzk
duk
dvk�;
Step 6. Select the least positive integer G such that

*�zk+0G1dzk
vk+0G1dvk�−*�zk
vk��−-
 (3.12)

�zk+0G1dzk�T �vk+0G1dvk�−�1−0G1�zTk vk�0
 (3.13)

If we can not find such a G, then stop;
Step 7. Let .k=0G1 and �zk+1
uk+1
vk+1�=�zk
uk
vk�+.k�dzk
duk
dvk�. Up-

date wk by wk+1=�1−.k�wk+.kŵk. Let k=k+1 and go to Step
2.

We use the following stopping criteria:

�cT z−bTu�
1+�bTu� < F1
 (3.14)

��Bz−b
Nz��
1+�z� < F2
 (3.15)

�BTu+v+NTw−c�
1+�v� < F3 (3.16)

where �·� is the H2 norm, scalars F1
F2
F3 are prescribed tolerances. It is easy to
note that our stopping criteria are identical to that used in [16].
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Table 1. Three-stage random test problems

Probs S NC Size(row×column)

r3stage1 4 28 (12) 68×80

r3stage2 9 80 (34) 170×180

r3stage3 16 156 (66) 316×320

r3stage4 25 256 (108) 506×500

r3stage5 36 380 (160) 740×720

r3stage6 49 528 (222) 1018×980

r3stage7 64 700 (294) 1340×1280

Table 2. Numerical results by Algorithm 3.3

Probs ( Iter RPC RDC RNC CPU

r3stage1 9.0409e-06 17 2.6664e-10 3.0089e-15 6.2035e-08 1.420

r3stage2 2.5396e-06 20 1.3819e-09 7.2871e-15 2.5585e-07 4.010

r3stage3 3.0877e-06 24 1.4812e-09 1.8986e-14 4.5757e-07 8.840

r3stage4 9.4097e-07 25 4.1383e-09 1.0429e-14 1.8498e-06 15.000

r3stage5 3.0015e-07 37 9.5042e-09 1.0137e-14 4.9727e-06 33.170

r3stage6 8.6278e-07 29 4.2417e-09 1.8045e-14 6.1104e-06 36.750

r3stage7 4.9829e-07 33 5.3222e-09 1.2502e-14 3.4834e-06 57.620

4. Numerical results

Algorithm 3.3 is applied to solving a set of randomly generated feasible test prob-
lems in this section. The matrices Bs are generated randomly and have the same
structure as (1.5), all entries of Bs are located in �−0
5
0
5�. Correspondingly bs
are selected randomly such that the vector with all entries being one is feasible
to the problem. Simply, we let cs=1/�nS��1




1�T for all s, thus the problem
is bounded, i.e., there is no sequence �zk� such that zk is feasible for all k but
cT zk→−�.
We programmed Algorithm 3.3 in MATLAB code and run under version 5.3.

The initial parameters are selected as 00=1
01=0
8 and F0=5, which imply that
the starting points for all test problems are infeasible. We choose -=10−3/�nS�.
It is noted that if the prescribed maximal iteration number is not surpassed, the
selection of - will not change the behavior of the algorithm. Furthermore, although
theoretical results show that convergence of the algorithm in O�

√
nL� iterations

can be guaranteed for (2.1)–(2.2) if + is chosen around O�
√
n�, practical experi-

ences indicate that much faster convergences are observed when + are set around
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Table 3. Random test problems with different stages and
scenarios

Probs m n T S NC Size(row×column)

rand1 5 15 2 16 150 (105) 230×240

rand2 5 15 2 64 630 (378) 950×960

rand3 5 15 2 121 600 (360) 1205×1815

rand4 6 15 3 16 171 (99) 267×240

rand5 8 15 3 64 525 (231) 1037×960

rand6 9 14 3 121 1030 (350) 2119×1694

rand7 7 15 4 64 783 (423) 1231×960

rand8 10 18 4 216 2595 (1000) 4755×3888

rand9 10 20 5 256 4092 (1896) 6652×5120

O�n1
5� and O�n2�, see [26]. In our implementation, we let +=1/4 nS
√
nS. We

select the tolerances F1=F2=F3=10−4.
Firstly we solve a set of three-stage stochastic linear programs by our code.

There are same numbers of variables and constraints respectively in each stage
for these problems, i.e., n0=4
 n1=n2=8
 m1=2
 m2=5
 m3=3. The
details on these test problems are listed in Table 1, where NC is the number of
nonanticipativity constraints before and after preprocessing, the last column is the
size of the reformulation problem (1.6)–(1.8) before preprocessing.
The numerical results are presented in Table 2, where ( is the average error of

the complement constraints, Iter represents the number of iterations, RPC and RDC
represent the H2 norms of residues of primal constraints (the first row of (2.23))
and its dual constraints (the second row of (2.23)) respectively. For convenience
of observing the preprocessing, we calculate RNC as the H2 norm of constraints
(1.10). CPU represents the Central Processing Unit time (in seconds) for running
our MATLAB code in solving the problem. Since we solve (2.26) and (2.28) based
on decomposition and in series by using a for cycle in our code, which results in
a large fraction of CPU time, we believe that CPU time listed in the table can be
decreased greatly by a parallel implementation.
The results in Table 2 show that all of the random test problems in Table 1

have been solved by Algorithm 3.3, the approximate primal-dual solutions are
derived. One of very promising properties in applying interior point methods to
multistage stochastic programs is that the number of iterations is typically very
low and insensitive to the number of scenarios.
We also solve a set of random test problems with different stages and scen-

arios, the details on these test problems are listed in Table 3. The numerical results
derived by Algorithm 3.3 are presented in Table 4.
In summary, our study shows that, by combining the idea of scenario analysis

and the infeasible interior points and by using decomposition techniques in solv-
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Table 4. Numerical results by Algorithm 3.3

Probs ( Iter RPC RDC RNC CPU

rand1 1.6567e-06 30 1.4052e-10 3.8721e-16 4.5849e-10 8.022

rand2 1.0640e-07 37 8.8344e-10 2.9383e-16 6.6548e-09 49.040

rand3 3.4071e-07 33 1.0692e-10 7.9457e-17 3.4897e-10 90.651

rand4 4.3286e-07 24 5.5526e-10 2.7498e-15 4.7873e-08 6.249

rand5 2.4215e-07 39 5.7452e-10 4.5740e-16 9.0860e-09 50.773

rand6 2.2568e-07 24 9.7530e-10 7.1767e-16 7.5748e-08 66.776

rand7 5.3785e-07 41 1.4356e-09 1.8850e-14 8.1710e-08 56.391

rand8 3.0685e-07 43 9.7072e-09 1.5395e-14 2.7300e-05 440.163

rand9 2.4809e-07 47 3.9130e-08 3.7443e-14 1.9365e-04 850.543

ing the Newton equations, it is possible to greatly improve the computability of
multistage stochastic linear programs.
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